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Abstract

We develop a fourth order accurate finite difference method for solving the
three-dimensional elastic wave equation in general heterogeneous anisotropic
materials on curvilinear grids. The proposed method is an extension of the
method for isotropic materials, previously described in the paper by Sjogreen
and Petersson [J. Sci. Comput. 52 (2012)]. The proposed method discretizes
the anisotropic elastic wave equation in second order formulation, using a
node centered finite difference method that satisfies the principle of summa-
tion by parts. The summation by parts technique results in a provably stable
numerical method that is energy conserving. We also generalize and eval-
uate the super-grid far-field technique for truncating unbounded domains.
Unlike the commonly used perfectly matched layers (PML), the super-grid
technique is stable for general anisotropic material, because it is based on
a coordinate stretching combined with an artificial dissipation. As a result,
the discretization satisfies an energy estimate, proving that the numerical
approximation is stable. We demonstrate by numerical experiments that, if
the super-grid layers are sufficiently wide, the errors due to truncating the
domain are of the same order as, or smaller than, the propagation errors
from the interior of the domain. Applications of the proposed method are
demonstrated by three-dimensional simulations of anisotropic wave propa-
gation in crystals.
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1. Introduction

This paper describes a fourth order accurate numerical method for cal-
culating wave propagation in general anisotropic elastic materials, i.e., ma-
terials in which waves propagate with different speeds in different direc-
tions. Such materials occur in several applications. One class of anisotropic
materials are crystals. Here the directionally dependent wave propagation
properties follow from the symmetries and structure of the atomic bonds
in the crystal. In seismic applications, isotropic layered materials behave
anisotropically when they are subjected to waves where the wavelength is
much longer than the thickness of the layers [1]. Furthermore, fractures in
an isotropic material can lead to directionally dependent wave propagation
properties [2], i.e., anisotropic behavior. More generally, spatial homoge-
nization of a fine grained heterogeneous isotropic elastic material is known
to result in a coarser grained elastic model with anisotropic properties [3, 4].

Many wave propagation codes for isotropic elastic materials are based
on finite difference methods on staggered grids [5, 6, 7]. These methods
approximate the elastic wave equation in first order velocity-stress formula-
tion. Unfortunately, the staggered grid approach is non-trivial to general-
ize to general anisotropic materials. The fundamental difficulty is to place
the dependent variables on the staggered grid, such that all terms in the
anisotropic Hooke’s law can be approximated accurately and, at the same
time, making the numerical method stable. Since an isotropic material has
anisotropic properties when the equations are transformed to curvilinear co-
ordinates, similar difficulties occur for staggered grid methods on curvilinear
meshes. Node centered methods, which discretize the elastic wave equation
in second order displacement formulation, do not have this difficulty. For
example, the spectral element method, described in [8], is naturally formu-
lated for general linear stress-strain relationships, and has successfully been
used for modeling general anisotropy [9] as well as realistic topography using
curvilinear (unstructured hexahedral) meshes [10].

The present paper has two objectives. First, we describe a fourth or-
der accurate node centered finite difference scheme for wave propagation in
general anisotropic elastic materials. Our scheme satisfies the principle of
summation by parts (SBP) and is a generalization of the method described
in [11, 12], which is implemented in the elastic wave propagation open source
code SW4, version 1.0 [13]. The finite difference scheme is fourth order ac-
curate, stable, and energy conserving. We here generalize the method to a



fully anisotropic material in curvilinear coordinates, allowing for accurate
modeling of realistic topography. Our main motivation for using the sum-
mation by parts method is to obtain a spatial discretization that satisfies an
energy estimate, which guarantees stability of the numerical approximation
for heterogeneous materials on curvilinear grids with free surface or Dirichlet
boundary conditions. We remark that our SBP method uses ghost points
just outside the boundaries to enforce the boundary conditions in a strong
(point-wise) sense. There is a related SBP method that does not use ghost
points and instead enforces the boundary conditions in a weak sense using
penalty techniques, see e.g. [14, 15, 16].

The second objective is to analyze and numerically evaluate the super-
grid far-field truncation technique for anisotropic elastic materials. Super-
grid far-field conditions truncate very large or unbounded domains to finite
extent by adding sponge layers outside the domain of interest. Inside the
layers, the wave equation is modified by a combination of grid stretching
and high order artificial dissipation. Compared to perfectly matched lay-
ers (PML) [17], the greatest strength of the super-grid technique is that
the overall numerical method is provably stable, as long as the underlying
numerical method is stable on a curvilinear grid. Note that the PML equa-
tions can have unstable solutions (growing exponentially in time) for some
anisotropic materials [18] that violate the so-called geometric stability con-
dition [19]. We have previously proven that the isotropic discretized elastic
wave equation with super-grid layers satisfies an energy estimate [12], pre-
cluding exponential growth of the numerical solution. In the present paper,
we extend that analysis to general anisotropic elastic materials on curvilinear
grids. An additional strength of the super-grid technique is its simplicity
and low computational cost. In contrast to the PML method, super-grid
does not rely on augmenting the wave equation with additional differential
equations that govern additional dependent variables. A potential weakness
of the super-grid technique is that it does not achieve the ’perfect’ non-
reflecting property of PML. However, if the super-grid layers are sufficiently
wide, numerical experiments indicate that artificial reflections from the far-
field truncation can be made to be of the same order, or smaller, than the
propagation errors from the interior of the domain.

This paper is organized as follows. In Section 2, we review the equations
of anisotropic elastic wave propagation in Cartesian coordinates. Section 3
generalizes the results of Section 2 to curvilinear coordinates. The finite
difference discretization is presented in Section 4, where we also present an
efficient way of estimating the stability limit for the time step. Section 5
describes the super-grid technique and numerical experiments are presented



in Section 6. Here we verify the accuracy of the proposed finite difference
scheme, demonstrate the accuracy of the super-grid far-field truncation tech-
nique, and verify energy conservation of the numerical solution. Conclusions
are given in Section 7.

2. The anisotropic elastic wave equation

To make the presentation self-contained and to define a consistent no-
tation, we start by introducing the governing equations in a form that is
amenable for constructing the SBP discretization. For further background
information, we recommend an advanced text book on solid mechanics,
e.g. [20].

We consider the time-dependent elastic wave equation in a three-dimensional
domain x € €2, where x = (a:(l),x(z),x(?’))T are the Cartesian coordinates
and u = (u(l), u?, u(3))T are the Cartesian components of the three-dimensional
displacement vector. In displacement formulation, the elastic wave equation
takes the form

0%u

=V >
pom =V T+F, xeQ, t>0 (1)
VT =GICGsu=:Lu, (2)

subject to appropriate initial and boundary conditions. Here, p is the den-
sity, 7 is the stress tensor, and F is the external forcing per unit volume.
The spatial operator L is called the 3 x 3 symmetric Kelvin-Christoffel dif-
ferential operator matrix [20]. Let 7;; and &;; be the Cartesian components
of the symmetric stress and strain tensors, respectively. We adopt Voigt’s
vector notation,

o = (Ti1, Taz, Ta3, T3, Tiz, Tiz) ', € = (€11, Ean, Es3, 2603, 2613, 2E12) " .

which allows Hooke’s law to be expressed in terms of the 6 x 6 stiffness
matrix C, which is symmetric and positive definite [20]. Because C is sym-
metric, it has 21 unique elements, corresponding to the 21 parameters of a
general anisotropic material. With this notation, the strain vector and the
divergence of the stress tensor can be expressed in terms of the symmetric
part of the gradient operator and its transpose, respectively,

00 0 0 0 03 O
Lu:Gza', o ="Ce, e =(G,u, Gz =10 9 0 935 0 o1, (3
0 0 03 9 01 0



where 9}, = 9/0z*)
For the purpose of constructing a SBP discretization, we introduce the
notation
GTo = Pl'ojo + Pl oyo + Pi 050, (4)

where the matrices are defined by

100000 000001
Pf=]lo0000 1|, PP=]o 1000 0],
000010 000100
and
0 00 1 0
Pf=fo 00100
0 1000
By using (4) in (2), we obtain
3 3 3 3
Lu=Y Plo;|CY Powu| => > 0;(P/CP.Ou)
j=1 j=k j=1 k=1

iia (M o), (5)

Jj=1k=1
where the 3 x 3 matrices on the right hand side are defined by
M* = PlCP,. (6)

Hence, each matrix M7* contains a subset of the elements of C, as de-
termined by the matrices P;. We refer to Appendix Appendix A for the
exact expressions of M7*. From the positive definiteness of C' it follows that
M, M?2 and M33 are also positive definite. Moreover, the definition (6)
shows that M* = (MJ¥)T. With this notation we can write

Lu=0 (A1Vu) + Oy (AQVU) + 03 (Agvu) , (7)
where
A Vua = M1 oju + M™0,u 4+ M305u, (8)
AoV := M1 91u + M*0,u + M*3u, (9)
A3Vu = M3181u+M3282u+ M3363u. (10)



Because Lu is equal to the divergence of the stress tensor, we also have

T Ti2 T3
A1Vu = 712 s AQVU. = 752 s AgVu = 753 . (11)
T3 Ta3 T33

From (11) it follows that a boundary with unit normal n = (), n(?), ()T

has boundary traction
n-7(u) =nMAVu+n®A,Vu +n® A3V (12)
A free surface boundary condition corresponds to n - 7 (u) = 0.

2.1. Energy estimate

For a box-shaped domain, Q = {0 < ALy < a(l),() < (2 < a(2),0 <
) < a®}, we define the Ly scalar product of two real vector-valued func-
tions u(x) € N3 — RN and v(x) € N3 — R by

q
(u,v)s2 :/ (Z u(l)v(l)) dzV dz® dz3). (13)
& \i=1

An energy estimate for the solution of the elastic wave equation can be
derived by analyzing the scalar product between u; and (1),

(ug, pup)2 = (az, Lu)y + (ug, F), . (14)
From (7),
(v,Lu), = (v,01(A1Vu) + 02(A2Vu) + 05(A3Vu)),
=: —S(v,u) + B(v,u). (15)

Here, S and B represent interior and boundary terms, respectively. After
integration by parts, the interior term can be written

S(v,u) = (81v, M'1ou + M2 + MBd3u),

+ (agv, M218111 + M2282u + M2383u)2
+ (03v, M1 o1u 4+ M320yu + M3303u),. (16)



The definition of MJ* in (6) gives, ijTMjk(?ku = ajvTPjTCPkaku =
(P;j0;v)TC POk, so that

3 3
ZZ P@v CPkaku 2— (ZP@V CZPkaku)

7j=1k=1 k=1
— (Guv, CGau)s.

It follows from the positive definiteness of C' that S is symmetric and positive
semi-definite,

S(v,u) = S(u,v), S(u,u)=(Gsu,CGsu)y > 0. (17)

Because C' is positive definite, the null-space of S consists of functions u
such that Gsu = 0. It is straightforward to show that there are six lin-
early independent functions that satisfy Gsu = 0, corresponding to solid
body translations in the three coordinate directions and solid body rota-
tions around the three coordinate axes.

The boundary term of (15) satisfies

a? a®)
(v,u) / / v A1Vu} (1) 0 dz® dz®
(2)=0 (3)=0

e a® ) ()
+ vl AoVu dx(D d3
/x(l) 0/(3) -0 2 ]1(2):0

aD a?
/ / [v AgVu] (3) o dzW dz®). (18)
1 =p (2)=0

Obviously, B(v,u) = 0 if v satisfies homogeneous Dirichlet conditions. The
first term on the right hand side of (18) is evaluated along the boundaries
2z =0 and 2V = o, respectively. Here the normal is n = ($1,0,0)T7
and A;Vu equals the boundary traction. Hence, if a free surface condition
is imposed along () = 0 or () = (1), we have 4;Vu = 0. The same
argument applies to the second and third terms. Therefore, B(v,u) = 0 if
u satisfies free surface conditions on all boundaries. In summary,

B(v,u) =0, ifv=0,orn-7(u)=0,for x € 9. (19)
From (14) and (15) it follows that

1% (H\/ﬁutng + S(u, U)) = B(ug,u) + (ug, F)a. (20)



The terms on the left hand side, ||\/pu¢/|3 and S(u,u), represent the kine-
matic and potential energies, respectively. The boundary term B(u;,u) =0
if u either satisfies homogeneous Dirichlet or free surface conditions, because
if u = 0 on the boundary then also u; = 0.

By integrating (20) in time,

T
1
E(T):E(O)+/ (uy, F)adt, E(t):= §(||\fput||§+(Gsu, C(Gsu))2),
t=0
if B(u;,u) = 0. This shows that the solution of the elastic wave equation
subject to homogeneous Dirichlet or free surface boundary conditions is a
well-posed problem. In the absence of external forcing (F = 0), we get
E(t) = E(0) for all t > 0, i.e., the total energy of the solution is conserved.

3. Generalization to curvilinear coordinates

In this section we consider non-rectangular domains. Our presentation
is essentially a generalization of the technique developed in [21].
Assume that there is a one-to-one mapping x = x(r) : [0,1]> — Q C R3,

T
x(r) = (+0@), 2@ 1), 20)) L x= (O, )T, 0 < <,

for k£ = 1,2, 3, from the unit cube in parameter space to the domain €2 in
physical space. Denote partial differentiation with respect to the parameter
coordinates by 0y = 9/ 9r®) The relation between 9; and 0; can be ex-
pressed in terms of the forward mapping function x = x(r), or its inverse,
r=r(x): Q — [0,13, where r(x) = (r(l)(x),r(z)(x),r(3)(x))T. By the
chain rule,

- 9z(®) 5. - or(7)
0g=>_ By, 0= &;0j, Lij= EPOE (21)
j=1

for ¢ = 1,2,3 and ¢ = 1,2, 3, respectively. The derivatives of the forward
and inverse mapping functions define the covariant and contravariant base
vectors,

oz /ork) or® 19z &1k
a = 5kx = 8x<2)/8r(k) , ak .= vrk) = 87*(’“)/83;(2) =& |
0x(3) /orF) or®) 19z3) &3k
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Figure 1: The mapping between physical (Cartesian) space (left) and parameter space
(right) in the two-dimensional case. Here, boundary segments I'1, T'2, I's, and Ty are
mapped to to r) = 0, r) = 1, r® = 0, and r? = 1, respectively.

for k = 1,2, 3, respectively. It is well-known that the contravariant base
vectors can be expressed in terms of the covariant base vectors (see [22] for
details),

al = 5 (aj xag), (4,4,k) cyclic, J=det|a; az ag|. (23)

Here, J is the Jacobian of the forward mapping function. The above relation
provides a convenient way of calculating the metric coefficients §;;, which
are needed in the curvilinear formulation of the elastic wave equation. In
the following we assume that the mapping is non-singular, with 0 < J < oc.

In Cartesian coordinates (left side of Figure 1), the elastic wave equation
takes the form (1)-(2). In curvilinear coordinates, it is natural to formulate
the elastic wave equation as

0%u

P gz = JIu+JF, re (0,13, t>o0. (24)

We introduce the curvilinear mapping into (4) to obtain

3 3 3 3
Gsu = Z Pj(?ju = Z P] Z §jk5ku = Z ]Bkgku,
j=1 k=1

j=1 k=1



where 5
Pe =) &P
j=1

This definition gives the divergence of the stress tensor in curvilinear coor-
dinates,

3 3
Lu = GICGu =Y PI9;(CY Bd)
j=1 k=1
1 S~
=233 0 (JPCRd). (25)
=1 k=1
Here we used the metric identities
O1(J&) + 0a(J&k2) + 03(J&3) =0, k=1,2,3, (26)

which follow from (23) (also see [22]). This identity allows the term JﬁjT

to be moved inside the differentiation 6~7J on the right hand side of (25). We
define the matrices

N* = JPI'CP, (27)
and rewrite (25) on the same form as (7)—(10),
JLu = 51 </L€u> + 52 <AVQ€U> + 53 <Zg%ll> s (28)
where
2{1611 = Nllélu + N12(§2u + N1353u, (29)
22611 = N2151u + N22(§2u + N23é311, (30)
A3Vu := N319u + N329,u + N*dzu. (31)

The definition (27) makes it straightforward to verify that the matrices N7*
have the same properties as the matrices M7*, i.e., N'' N?2 and N33 are
positive definite and N*¥/ = (N7F)T,

3.1. Boundary conditions

To transform a free surface boundary condition to curvilinear coordi-
nates, we first note that the boundary normal can be represented by the

10



metric derivatives. For example, along r) = 0 or () = 1, the outwardly
directed unit normal satisfies

o)
n O e 1 EH
S = = 21 |
(1)
n® Vel \/(511)2 + (€21)” + (&a1)° a1

for r = 0, or ™ = 1, where the minus sign applies to r) = 0. The
components of the stress tensor are given by (11). Using (21), the gradient
of u in (8)-(10) can be expressed in terms of derivatives with respect to the
parameter coordinates. After some straightforward algebra,

==y |

T = )

(N“&u+N”@u+NB@@, rD=0,1.  (32)

The definition of A;Vu in (29) finally gives

F1

— A 1)
n-T—iﬂ6ﬂﬁrhVu,7x)—0J. (33)
In a similar way,
__ Tl 3 (2 _
T = mz‘lgvu, r = 0, ]., (34)
__Fl s 3) _

3.2. Energy estimate

By using (24)-(28), the elastic wave equation in curvilinear coordinates
can be written

p?;tl; = % [51 (g1§u> + o (AV26U> + O3 (ﬁgﬁuﬂ +F, (36)

for r € [0,1]3 and ¢ > 0. In curvilinear coordinates, the volume element in
an integral is scaled by J, and the Lo scalar product (13) becomes

q
(u,v) :/ Zu(l)v(l) J dr® dr®) dr®), (37)
relo,1]3 =)

An energy estimate can be derived in the same way as in the Cartesian
case, because the factor J in the scalar product cancels the 1/J on the right

11



hand side of (36). Partial integration gives a spatial decomposition of the
form (15). The only difference is that the matrices M7*, which describe
the material properties in the Cartesian case, are replaced by the matri-
ces N7k which describe the corresponding material properties in parameter
space r € [0,1]3. Since this is the only difference, the interior term S(v,u)
is symmetric and positive semi-definite also in curvilinear coordinates. In
curvilinear coordinates, free surface conditions take the form (33)-(35), and
Dirichlet boundary conditions are transformed trivially. Hence, the bound-
ary term B(ug, u) = 0 if u either satisfies free surface or homogeneous Dirich-
let conditions. Under such boundary conditions, the elastic wave equation
in curvilinear coordinates is therefore a well-posed problem.

3.8. Isotropic elastic material in curvilinear coordinates

In the special case of an isotropic elastic material, we have

2u+XA 0 0 0 A0 00 A
Mg=| 0o wol|, Mi=|p 00|, Mi=| 0o o0 of,
0 0 p 0 0 0 w0 0
L0 0 00 0
M, = (M), M2 =10 2u+Xx 0f, MZ =10 0 AJ,
0 0 " 0 pw O
w0 0
Mg, = (M), ME = (ME)T, M =10 p 0
0 0 2u+A\

Here, A and p are the first and second Lamé parameters, respectively.
In curvilinear coordinates, the corresponding material properties are de-
scribed by the matrices N/, defined in (27). For example, N'! satisfies

0 & &néa &ués
0|+ M) | &b &3 Enéan
1 fust &arlar &5

o = O

1
Nigw = Ju (f%l + &5+ fgl) 0
0

The remaining N% are of a similar form. For a general curvilinear mapping,
note that the transformed matrices do not have any zero elements. Hence,
because of the coordinate mapping, the isotropic material has anisotropic
properties in curvilinear parameter space.

12



4. Discretization of the elastic wave equation

To conserve space we only describe the discretization in curvilinear co-
ordinates. The Cartesian case follows by using the semi-trivial mapping
function 2 (r*)) = ¢®)rk) k =1,2,3, where a¥) are constants.

We consider the elastic wave equation in curvilinear coordinates (24)
where JLu is given by (28). We re-order the terms of the spatial operator
such that

Lu= % [51(]\7115111) + 0(N?03u) + 93(N**03u) + 0, (N2dyu) + 01 (N2 5su)

18y (NB1u) + Joy(NB8yu) + 3 (N3LGyu) + 53(N3252u)} . (38)

A uniform grid, rl(l) =G —1hy,i=0,...,n1 + 1, 7“](-2) = (j—1ho, j =
0,...,n9+1, and r,(;’) = (k—1)hs, k =0,...,n3+1 discretizes the domain in
parameter space. Here, the grid spacings are h; = 1/(n1—1), ho = 1/(na—1),
and hg = 1/(n3 —1). The points outside the domain are ghost points, which
are used to impose the boundary conditions.

Before presenting our spatial discretization of (38), we first review some
well-known properties of summation-by-parts (SBP) finite difference opera-
tors in a one-dimensional setting.

4.1. SBP finite difference operators

Assume that a one-dimensional domain is discretized by the uniform grid

x; = (i—1)h for i =0,...,n+ 1, where the domain boundaries are at i = 1

and i = n. Let u; be a real-valued function defined on the grid. We say

that the difference operator D, approximating d/dx, satisfies the property
of SBP if

(u7 Dv)hl = —(D’U,, 'U)hl — U1V1 + UpUnp, (39)

in a scalar product,

n
(u,v)p1 = thiuwi, 0 < w; < o0, (40)
i=1

where w; are the weights in the discrete scalar product. The grid function
Du; is defined at all points i« = 1,...,n. Away from the boundaries, Du;
equals a centered difference operator. In order to satisfy (39), the coefficients
in D are modified at a few points near each boundary. When using a scalar
product of the form (40), it is well known that (39) can only be satisfied

13



if the order of the truncation error in Du is reduced by a factor of two at
a few points near each boundary. It is possible to improve the truncation
error near the boundary by using so-called full norm SBP operators [23].
However, these operators can lead to instabilities with variable coefficients
and will not be used here.

In the following our presentation assumes a scalar product of the form
(40).

SBP operators of order p away from the boundaries and order p/2 near
the boundaries, for p = 2,4,6, 8, are well-documented in the literature, see
e.g. [23]. It is theoretically possible to derive even higher order accurate SBP
operators, but the stencils become very wide and the coefficients depend on
a number of parameters which can be difficult to determine.

Second derivative terms of the type (a(x)usz),) appear in the elastic
wave equation. Here a(x) is a known function that describes a material
property such as the shear modulus. These terms could be approximated by
applying D twice. However, this approach leads to difficulties with odd-even
modes, meaning that the null space of D(aDu); contains highly oscillatory
grid functions. Furthermore, because of the boundary modification, the
truncation error of D is not smooth near the boundary, leading to additional
loss of accuracy during the second application of D.

In [11], we constructed a difference operator G(a)u approximating (auz)q,
which does not have problems with odd-even modes. This operator satisfies
the SBP identity

(v, G(a)u)p1 = —(Dv,aDu)p; + (v, P(a)u)pry — v1a1S%u 4 vnan SPuy,. (41)

Here, S? is a difference operator approximating the first derivative on the
boundary, to full order of accuracy (p). The operator is of the form S%u; =
(1/h) ZZ:()l sguk, where s;, are constant stencil coefficients. Note that S®u;
makes use of the ghost point value ug. The operator SPu,, is similar, and
uses the ghost point value wu,4+1. The positive semi-definite operator P(a)
is small and non-zero for odd-even modes. Note that the scalar product
(v, u)pr1 is weighted differently than (u,v)p, see [11] for details.

The operator G(a) derived in [11] is fourth order accurate in the interior
and second order near the boundary. It is designed to be compatible with
the operator D in (41), which is the standard SBP 4" /2"? order accurate
approximation of the first derivative. Because the elastic wave equation
is solved in second order formulation, two orders of accuracy are gained
in the solution, which becomes fourth order accurate in maximum norm.
Extensions to even higher order is possible, but not pursued here.

14



We remark that there is a related SBP method for discretizing (auy ),
which does mot use ghost points and instead enforces the boundary condi-
tions by a penalty techniques, see e.g. [14, 15, 16].

The spatial operator of the elastic wave equation (38) consists of terms
such as 9;(N“99d;u). Here NV is a 3x3 matrix with elements ny;,. When
i = j, the term is approximated by G(N%)u, defined as

G(N")yu:= | (G(N¥)u), [, (G(N)u), = G(nii)ul?, (42)
(G(N")u)3 =

for p = 1,2,3, where G(nij)u(q) is the scalar difference operator described
above.

For vector valued grid functions, we approximate 5ju using the operator
Dju, which is defined component-wise. This operator is used to approximate
9;(N99;u) when i # j.

The vector version of the SBP identities (39) and (41) are

(u,Dv)p1 = —(Du, v)p1 — ulTvl + ugvn7 (43)
(v, G(N)u)p; = —(Dv,NDu)p1 + (v, P(N)u)p1
— vIN 8%, + vIN, Sbu,, (44)

as can be seen by component-wise application of the corresponding scalar
identities.

4.2. Spatial discretization
The spatial operator (38) is discretized as

1
Jijk

Lyu; i, = [GL(N" )y 1, + Ga(N?)uy j i + G3(N*)uy s

+ D1(N"Dau; ) + Di(N'"Dsu; )

+ Da(N*'Diu ) + Da(N**Dsu, )
+D3(N31D1ui,j,k) + D3(N32D2ui,j,k)] ) (45)
fori=1,...,n1,5=1,...,n9,and k=1,...,n3. Here, D,, is the standard
SBP finite difference operator acting in one of the curvilinear coordinate

directions m = 1,2, 3. Similarly, G,,(N) denotes the second derivative op-
erator (42) acting in direction m. The discrete scalar product is defined
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ny n2 n3

(u V h = hlhghgzzzw wj wk ,] ku”kvwk

=1 j=1k=1

The matrices N/ are defined by (27). If analytical expressions for the deriva-
tives of the coordinate mapping are available, they simply need to be evalu-
ated at the grid points. However, if they are not available, they can instead
be approximated by sufficiently accurate numerical differentiation,

9D 9
or®)

Z‘?j?k

p=123, ¢=1,2,3. (46)

In this case, the covariant base vectors follow from (22), with 92(@ /9r®)
replaced by Dpac(q). The metric coefficients &, and the discretized Jacobian,
Ji jk are given by formula (23).

Remark 1. The difference operators can be evaluated undivided, i.e., the
grid sizes, hy, ha, and hs can be set to one when evaluating Du and G(N)u,

if also the metric difference approximations Dpaf( )k are treated in the same
way. This is because the grid sizes (h;) cancel in the expression for Lpu.

Remark 2. The metric identities (26) are in general not satisfied exactly
when the metric derivatives are approzimated by the difference formula (46).
When first order hyperbolic systems are discretized on curvilinear grids, not
satisfying the corresponding metric identities implies that the numerical ap-
prozimation of derivatives of constant functions can be non-zero. This, in
turn, can lead to spurious numerical effects when trying to preserve a con-
stant state over long times, unless special free stream preserving metric dis-
cretizations are used [24, 25, 26]. Because we here solve a hyperbolic system
in second order formulation, Lpu is identically zero for constant u, also when
the difference formula (46) is used to approximate the metric derivatives. In
practical calculations we have always found that these simpler difference for-
mulas are adequate.

The discrete analog of (15) is
(v,Lpu)p, = =Sp(v,u) + By(v,u),

where S}, is symmetric and positive semi-definite, and By, contains boundary
terms. To verify this equality we may proceed in the following way. We first
multiply (45) by wMw@w® JvT from the left, sum over all grid points,
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and finally apply the one-dimensional identities (43) and (44) along each
curvilinear coordinate direction. This results in

(v,Lpu), = —(Dyv, N''Dyu);, — (Dyv, N'2Dyu);, — (D1v, N3 D3u),
— (Dav, N?'Dyu);, — (Dav, N2Dyu);, — (Dyv, N3 Dsu),
— (D3v, N3'Dsu);, — (D3v, N32Dyu);, — (D3v, N33 Dsu),
— (v, PL(N'HYu)p, — (v, Poy(N*Hu)p, — (v, P3(N>**)u)p, + Bp(v,u).  (47)

All terms on the right hand side, except the last one, define Sy (v,u). The
boundary term is given by

Bh(v7 u) = h2h3 ZQ Z?)w 2) (3) |: Al hvhu” k] liil
Jj=1k=1 =

n2

+h1hgzzw 1) (3) [ Z]kA2hvthjk‘:|j

i=1 k=1
SN, 0,2 h=ns
JrhthZZWZ‘ Wj [ Z]k;A3hvhu’L]ki|k 1’ (48)
i=1 j=1
with
Ay, Viu = N1S%u + N2Dou + N3 Dyu, (49)
Ay, Viu = N Dju + N25%u + N? Dyu, (50)
Az, Viu = N3 Dju + N32Dyu + N3 5bu. (51)
Energy conserving boundary conditions, i.e., boundary conditions that
make Bp(v,u) = 0, can be imposed either by a homogeneous Dirichlet
condition,

vijk =0, (i,7,k) on the boundary,

or by a free-surface condition,
Kq,h§hui7j7k =0, (i,4,k) on the boundary.

Here, ¢ = 1,2, or 3 depending on which side is being considered. For
example, on the boundary k = 1, we have

31 33 b . .
Nv’j’1D1u17]71+N 34, 11)2LIZJ 1+ i7j7153uiﬁj71 =0, 21=1,...,n1, 7=1,...,n9.

)
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This constitutes a system of three equations for the three unknowns u; j o,

32
soN3 a0 = ,]12 SKW; 5k PliD1ugj1 — N2 Dou 1.

Because N 331 is positive definite and sg # 0, this system always has a
unique solutlon. Note that the system only couples the three ghost point
values u; j, for each (4, j). There is no coupling along the boundary.

By comparing (49) with (32), we note that the former is an approxima-
tion of the scaled boundary traction, where the scaling factor J \Vr(1)| is the
surface measure. To make this obvious, we can write the first sum of the
right hand side of (48) as (omitting the factor haohs)

nz2 ng i=n1
(2) <3)[ 1) 1 TS _
W wk i, k|V7" ’V i, kiALthuz, k =

i=n1

ng N3
2 3

>3 ePul? [l OO T 62

j=1 k=1

and similarly for the other two sums. Here, n - 7;, = A1 hvhu is the

J|V JIvr]
discretization of the boundary traction (32).
Finally, when energy conserving boundary conditions are imposed, the

semi-discrete energy estimate

2 (e u) + Sa(u, ) = (g F, (53)
follows in the same way as the corresponding estimate for the continuous
problem. This leads to stability if the energy, (pus, uy)p + Sp(u, ), is pos-
itive. Our SBP discretization has the property that Sj is positive semi-
definite with a null space that is a discretized approximation of the null
space of the continuous operator, i.e., solid body translations and rotations.
For example, the odd-even modes, u; = (—1)7 are not in the null space of
Sy, because of the terms (u, Pj(N%7)u)p,, which are positive for such grid
functions [11]. Also note that solid body translations and rotations are not
possible if u satisfies homogeneous Dirichlet conditions on at least part of
the boundary. In this case Sj(u,u) becomes positive definite and the SBP
discretization is stable.
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4.8. Time discretization

The equations are advanced in time with an explicit time integration
method. As with all explicit time stepping methods, the time step must not
exceed the CFL stability limit. With a Newmark time stepping scheme,

n+1

—_2un 4 unfl
A}

u

=L,u"+F*, n=0,1,..., (54)

the expression for the CFL time step limit is

2
A6 (55)
The spectral radius ¢ = maxy,2o S, (u, u)/(u, pu)y is difficult to compute for
a general heterogeneous material, even when the material is isotropic. As
an approximation we consider the elastic wave equations in a homogeneous
material with periodic boundary conditions. A von Neumann analysis of the
Fourier transformed problem, in the case of second order accuracy, shows
that the spectral radius in an isotropic elastic material is well approximated
by
gwi—m”“"”” 4(0 +2¢2). (56)
p h?

Here, ¢, and c, are the longitudinal and transverse phase velocities, respec-
tively.

In a general anisotropic material, the square of the phase velocity, ¢?, is
an eigenvalue of the Christoffel equation,

1 3 3
*ZZ jnijkr. (57)

]:1 k=1

b

In general, the phase velocity depends on the direction of wave propagation
n = (n1,n2,n3)7, In| = 1. In the isotropic case, the three eigenvalues

of the Christoffel equation are [¢2, c2, ¢2], independently of the direction n.

?8) S
Since h?(/4 can be approximatedpby the sum of the three eigenvalues of the
Christoffel equation in the isotropic case, it is reasonable to assume that the
sum of the eigenvalues of (57) would also be a good approximation of h2( /4,
in the anisotropic case. The sum of the eigenvalues of a matrix equals the
trace of the matrix, i.e., the sum of its diagonal elements. Hence, the sum

of the eigenvalues in the direction n = (ny,no,n3)” is given by

3 3 3 3
}TT Zannijk ;ZZn nkTr(MJk> (58)

P j=1k=1 j=1k=1
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where T'r(M) denotes the trace of M. The expression (58) is a quadratic
form, whose maximum over all directions n equals the maximum eigenvalue,
Fmae = Max K, defined by

1
det(T —xI) =0, T= P Tr(M?Y) Tr(M?2) Tr(M?3)

Calculating the largest eigenvalue of this symmetric 3x3 matrix is inexpen-
sive. Furthermore, the calculation only needs to be done once, before the
start of the time stepping, because the material properties do not change in
time. We then use K4, as an approximation of h?¢ /4, resulting in the time

step restriction
2

A
hiéﬁmax < Ccfl~ (59)

If the material model has heterogeneous properties, the procedure is re-
peated at each grid point of the mesh, and the largest value of Kp,q, is used
in (59).

The Newmark scheme (54) is only second order accurate in time. The
calculations shown in this paper use a predictor-corrector modification to
obtain fourth order accuracy. It turns out that the fourth order scheme has
a somewhat larger stability limit for the time step [11], but the procedure to
estimate the largest eigenvalue ¢ remains the same. Unless otherwise noted,
we use C.p; = 1.3 in the numerical experiments in this paper.

5. Super-grid boundary conditions

We truncate unbounded or semi-bounded domains by using the super-
grid approach [27, 12]. In this technique, damping layers are added outside
the domain of interest. The idea is to mimic a very large physical domain,
where reflections from the boundary would need a very long time to return
to the domain of interest. Similar to our treatment of curvilinear domains,
a coordinate mapping is used in the layers. The elastic wave equation is dis-
cretized on a regular grid in parameter space, and the mapping corresponds
to stretching the grid to cover a very large physical domain. In parameter
space, the mapping acts by gradually slowing down and compressing the
waves as they progress through the layer. A high order artificial dissipa-
tion operator is applied to damp out waves that become poorly resolved
due to the coordinate mapping. The simple combination of a real-valued
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stretching function and artificial dissipation makes super-grid very straight-
forward to implement. This should be compared to the complexity of the
PML method [17], where additional differential equations must be solved for
auxiliary functions in the layers.

A very important property of the super-grid method is that, if the un-
derlying scheme is stable on a curvilinear grid, it will also be stable with the
artificial dissipation [12]. By using sufficiently smooth stretching functions
and high order artificial damping terms, we demonstrated in [12] that, if the
layers are sufficiently wide, artificial reflections can be made to converge to
zero at the same rate as the interior scheme. In that paper we considered
the isotropic elastic wave equation in heterogeneous materials. Here, we
generalize the approach to the anisotropic case, where it is known that the
PML technique can lead to stability problems [18].

For simplicity, we describe the super-grid technique for a Cauchy (whole-
space) problem (—oo < z(*) < 00), with super-grid layers on all sides of the
computational domain. This approach is straightforward to generalize to
more general configurations by omitting the layers on some sides of the
domain. The stretching functions are one-dimensional, i.e., (%) = z(*) (r(¥)
for k =1,2,3. Only the diagonal terms of the metric tensor §;; are non-zero
and the curvilinear transformation is of the form

o= WG, oW — L p_193 ¢ =)0 =0
k=0T 0T = g K LER L=
(60)

The Jacobian of the transformation satisfies J 1 = ¢(1) (2 ¢3).

An artificial dissipation term of order 2p is added in the super-grid layers.
On the semi-discrete level, the elastic wave equation with super-grid layers
becomes

£u
P a2

du

—1C%max
—Lou+tF - e(—1)PQq, (dt> =TI (o)

Here, 72, is a constant that depends on the order of the dissipation and C.f,
is the CFL number that determines the time step for the fully discretized
wave equation. For the isotropic elastic wave equation, we use cpgr =

1/0123 + 2¢2, where ¢, and ¢, are the compressional and shear wave speeds,

respectively. Section 4.3 discusses estimation of the wave speeds for the fully
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anisotropic equations. The dissipation term in (61) is of the form

3 oW Qg’;) (c® pyo®
Qupv = [ 30, 60 Q4 (e M p)® | (62)
3 oW g’;)(g(k)p)v(i%)

Each term in the sums of (62) acts along one of the coordinate directions,
and o(*) is a smoothly varying dissipation coefficient. The damping is scaled
by density (p) to make it balance the left hand side of (61). This allows 72,
to be constant when p varies in space.

We will use either fourth or sixth order artificial dissipation, correspond-
ing to p =2 or p = 3. When a fourth order (p = 2) artificial dissipation is
used, each one-dimensional term is discretized according to

P (™ p)p .= P p® (a<k‘> o D@D%) . (63)
The sixth order (p = 3) artificial dissipation is discretized according to

Qi (@®p)o = DY DYDY (05 D® DI DM} | (64)

where cell-centered averages are used for the coefficients, e.g., 7, 1/2 = (0 +

0j+1)/2. Here Df ) denote the standard first order forward and backward
divided difference operators in direction k.

When (61) is discretized in time by the explicit predictor-corrector method,
we want the stability restriction on the time step to be determined by the by
the largest wave speed in the interior of the domain, and not by the amount
of dissipation in the super-grid layers. For C.y = 1.3, this turns out to be
true for v4 < 0.02 and v < 0.005, respectively. If the damping coefficient
exceeds these values, C..y; must be reduced to make the time-stepping stable,
see [12].

In [12] we used the energy method to prove stability of the discretized
elastic wave equation with super-grid stretching and artificial dissipation.
This can be done without the SBP boundary modifications at the damping
layer boundaries. Instead, a sufficient number of ghost points are introduced
such that the centered finite difference operators can be applied up to the
outer boundary of the damping layer. Homogeneous Dirichlet conditions
are imposed at all ghost points. This procedure leads to a SBP-like stability
estimate, see [12] for details.

In practice, the solution at the ghost points are set equal to zero before
each time step. The material properties for the ghost points is usually
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extrapolated from the interior. Alternatively, they can be defined directly
from the material model if it is defined on a sufficiently large domain.

The stretching function ¢(r) and the damping functions o(r) are con-
structed from an auxiliary function ¥ (&) (the blue curve in Figure 2), which
smoothly transitions from one to zero and then back to one,

¢

L, §<0,
P(1-¢/0), 0<¢é<d,
¥(&) =40, (<E<1—4, (65)
P((E-1)/t+1), 1—-t<&<],
1, £>1.

Here we use the polynomial function P(n) = 7°(462 — 1980n + 3465n> —
3080m3 + 1386n* — 2527°), which satisfies P(0) = 0, P(1) = 1, and makes
(&) five times continuously differentiable. The one-dimensional stretching
and damping functions are defined by

¥(r)
o(r)’

This means that ¢(r) = 1, and o(r) = 0 for £ < r < 1 — ¢. Note that
er is given a small positive value to prevent the coordinate stretching from
becoming singular. It is not related to the damping coefficient ¢ in (61).
Throughout the numerical experiments in this paper, we use e, = 1074
Examples of the functions ¥ and ¢ are plotted in Figure 2.

o(r)=1—-1—ep)Y(r), o(r)= 0<er <l (66)

5.1. Three-dimensional considerations

Along the sides of a three-dimensional domain, where only one super-
grid damping layer is active, we use a one-dimensional damping function, as
described above. For example,

cW (@ r@ @) =50, 0<r® <y, <@ P ®) <10
If the one-dimensional damping function is used where several super-grid
layers meet (at edges or corners of the computational domain), it is necessary
to reduce the damping coefficient (2,) to avoid making the explicit time-
stepping scheme unstable, see [12]. However, this reduces the strength of
the damping where only one super-grid layer is active, which leads to larger
artificial reflections.
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T

Figure 2: The stretching function ¢(r) (red) and the auxiliary function ¥ (r) (blue), which
controls the strength of the damping. In this case, the width of each super-grid layer is
{=0.2.

A simple remedy is provided by introducing the linear taper function 7,

a, r <0,
T(r)=<a+(1—a)r/t, 0<r</,
1, r >/

For example, along the edge 0 < r < ¢, 0 < r(® < ¢, we define the
two-dimensional damping functions

0<r® <1y,

where o(r) is the one-dimensional damping function (66). Using this con-
struction, the strength of the damping is determined by

B, 1) i= (0 +0®)g = r(r®)up(r®) + (D) (r?),
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where ¢ (r) is the auxiliary function (65). When « = 1/3, this construction
satisfies max I = 1. Away from the edge, the strength of the damping is the
same as in the one-dimensional case because 1(r) = 0 and 7(r) = 1 for r > /.
Therefore, Ir(r™M, 7)) = ¢(r@) for r) > ¢ and 1(rM,r@)) = () for
r(2) > 0. At the edge, 7(0) = 1/3 and (0) = 1, giving I5(0,0) = 2/3.
The function Io(r(), 7)) has a local maxima along the diagonal r(1) =
r(2) ~ 0.31¢, where I, ~ 0.983. The tapering approach is straightforward to
generalize to the other edges of the computational domain.

Near a corner where three super-grid layers meet, the strength of the
damping equals I3 := (0(1) + 0@ 4 0(3))¢. For r®) < ¢, we generalize the
tapering approach by defining

e (M ), o (r)r(r@) (),
c@ M 2 Gy = 7)o ()7 (r3),
e M @ Gy = 7O (7)) (r3)),

r(3))

This construction also satisfies max I3 = 1. The strength of the damping
has a local maxima along the space-diagonal r(!) = 7(2) = () ~ 0.37¢ where
I3 =~ 0.823. Also note that the two-dimensional strength is recovered along
edges of the three-dimensional domain (where two super-grid layers meet),
e.g. I3(rM r@ G = I,(rM @) for r3) > ¢,

The tapering approach is of significant practical importance in three-
dimensional calculations, where up to three super-grid layers can meet at
corners. This is because the tapering keeps the maximum strength of the
super-grid damping approximately equal along sides, edges, and corners of
the computational domain. With the tapering approach, if the damping
coefficient 79, makes the time stepping stable with super-grid damping in
only one direction, the same value will also work when three super-grid layers
meet at a corner. Without the tapering approach, the time stepping would
become unstable unless the damping coefficient is reduced to approximately
v2p/3, leading to less efficient damping. To compensate, the layers would
need to be much thicker. Since the super-grid layers are added outside the
domain of interest, this would significantly increase the total number of grid
points in a three-dimensional case, thus making the calculation much more
expensive.

6. Numerical experiments

All simulations reported here were performed with the open source code
SW4, version 1.1 [28]. While most of the numerical experiments below
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were made with constant materials, our theory and numerical method is
applicable to any heterogeneous anisotropic material. The implementation
in SW4 allows the anisotropic material properties to be different at each
grid point. As a special case of a heterogeneous material, SW4 can handle
a material model with piecewise constant properties, see Section 6.4.

We consider wave propagation in Indium Arsenide (InAs), which is a
crystal with cubic symmetry. When the coordinate axes are oriented along
the bonds of the cubic crystal, its density and stiffness matrix are given by
(see [29])

83.29 45.26 45.26 0
45.26 83.29 45.26 0
45.26 45.26 83.29 0
0 0 39.59
0 0 39.59

o O o O

p=>5.6710°, C = -10%, (67)

using Sl-units.

We start by recalling some fundamental aspects of anisotropic wave prop-
agation, see e.g. [20] for details. The properties of wave propagation in a ho-
mogeneous anisotropic material are often quantified by its phase and group
velocities, as well as its slowness surfaces. A plane wave propagating in unit
direction n = (ny,n2,n3)” can be described by

, , k
u(x,t) = relkx—w) — peillnx—ct) =} _en =k, s=-—.
w

Here, r is the polarization vector, k = (ky, k2, k3)” is the wave vector, w the
angular frequency, £ the (angular) wave number, and s is the slowness vector.
Assuming homogeneous material properties, inserting the plane wave ansatz
into the elastic wave equation (1) with F = 0 and using (5), leads to the
dispersion relation (57), i.e., the Christoffel equation. The phase velocity,

equals the (positive) square root of an eigenvalue ¢? of the Christoffel equa-
tion. Note that the matrix in (57) is symmetric and positive definite, so c? is
real and positive. The slowness surface corresponding to phase velocity c is
defined by s = n/c. In spherical coordinates, (r, ¢,1), we have n = n(¢, ¢)
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Figure 3: Slowness curves for InAs for wave propagation in the (m(l),x(2)) plane. Units
are in [s/m].

and the slowness surface is given by r(¢,v) = 1/¢(¢p, ). The group veloc-
ity, in which direction energy propagates, is a vector with three components
defined as

vy = (0w /0k1, 0w/ Oka, Ow/Oks)".

One can show that the group velocity vector is orthogonal to its correspond-
ing slowness surface [18].

In general the Christoffel equation has three eigenvalues, corresponding
to three slowness surfaces. A slowness curve is a cross-section of a slowness
surface. In Figure 3 we show the slowness curves for InAs in the (z(M), 2(?))
plane. The curves are plotted in polar coordinates (r,#). For each an-
gle 0, we solve the Christoffel equation in the direction (n(l),n(2),n(3)) =
(cosf,sin 6, 0), resulting in three eigenvalues ci(0), k = 1,2,3. The corre-
sponding radii in polar coordinates are ri(6) = 1/ck(0).

The innermost curve (black color, labeled “L”) corresponds to the quasi-
longitudinal wave. It has the largest phase velocity, which only varies mildly
with the direction of wave propagation. The second fastest wave is shown in
blue color and labeled “S1”. This is a quasi-transverse wave with the same
phase velocity in all directions, corresponding to a circular slowness curve.
The other quasi-transverse wave (red color, labeled “S2”) has the slowest
phase velocity, with the minima ¢, = 1.831 - 10% at 0 = /4,37 /4,57/4,
and 77 /4.
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6.1. The whole-space problem with super-grid layers

We shall solve the anisotropic elastic wave equation numerically and we
start by studying a Cauchy (whole-space) problem, truncated by super-grid
layers on all sides of the domain. We take the domain of interest to be
(M), 2 2®)) € [1.6-10°,10.4-10%]. In the unit cube of parameter space,
the super-grid layers have thickness ¢ = 1.6/12 =~ 0.133. In the figures below,
cross-sections of the solution are plotted as function of scaled parameter
coordinates, to equal (x(l), x(Q),a:(g’)) within the domain of interest. In this
scaled parameter space, the super-grid layers have thickness 1.6 - 103.

The solution is driven by an isotropic point moment tensor source,

100
f(x,t) =g(t) Mo |0 1 0| Vé(x—x5), My=10", (68)
00 1

located at x, = (6, 6, 6)-103. Here, V& is the gradient of the Dirac
distribution. The source time function is the Gaussian,
1 N2 /0 2 1
g(t) = ———=ett)°27 5 — — 1 =0.375. (69)
2o 16

We estimate the dominant frequency in the Gaussian by fy = 1/(270) =
2.55 and the highest significant frequency by fia: = 2.5fp ~ 6.37. The point
moment tensor source term is discretized in space by using the technique
described in [30].

In Figure 4 we show the magnitude of the displacement in the 2z =
6 - 103 plane at time ¢ = 1.5. The outermost wave front corresponds to
the quasi-compressional wave. Corresponding to the shape of its slowness
curve (labeled “L” in Figure 3), it propagates slightly faster along the di-
agonal than along the coordinate axes. The waves closer to the center of
the figure are of quasi-shear type, which are generated by the moment ten-
sor source (68), even though it is isotropic. The complex wave fronts are a
result of the directional variation in phase velocity. Because the motion is
generated by a point source, all wave fronts are initially circular, but the
quasi-shear waves quickly develop a more complicated structure. In partic-
ular, note the swallow tail-shapes of the the slowest quasi-shear wave. They
are due to the inflection points in the “S2” slowness curve in Figure 3.

The anisotropic properties of InAs make it challenging to truncate the
computational domain in a stable and accurate way. Recall that the group
velocity vector is orthogonal to the slowness curve. The slowness curve of
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Figure 4: Magnitude of the displacement at time t = 1.5 in the plane z® = 6000. The
contour levels are spaced between 0.0375 (dark blue) and 1.2 (red) with step size 0.0375.

the quasi-shear wave “S2” has several segments where one component of the
slowness and group velocity vectors have opposite signs. According to the
theory by Bécache et al. [18], such materials violate the geometric stability
condition [19] for a perfectly matched layer (PML), making the numerical
approximation unstable.

We have theoretically shown that our discretization is stable on a curvi-
linear grid, and that the artificial dissipation makes the discrete energy decay
in time (see [12] for details). This implies that there are no exponentially
growing solutions of the anisotropic elastic wave equation with super-grid
layers, implying that the approximation is stable. For isotropic elastic ma-
terials we have numerical evidence that the super-grid method can be made
as accurate as the interior scheme [12]. We proceed by numerically investi-
gating whether these properties generalize to the anisotropic case.

Because it is impractical to store the numerical solution at all points in
space and time, we limit our investigation to study the convergence of the
time-dependent solution at fixed locations in the outer parts of the domain
of interest. For each grid size, we record the solution (as function of time)
at nine locations, on a uniform 3 x 3 grid,

e =2.10%, z(® =(2.0,3.6,5.2)-10°, 2 =(2.0,3.6,5.2)-10%. (70)

As an example, Figure 5 shows the Cartesian components of the solution for
t € [0, 6], at the location x, = (2.0,3.6,5.2)7 - 103. The difference between
solutions computed with grid sizes h = 20 and h = 10 is shown on the right
side of the same figure. Note that the difference is significantly smaller than
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Figure 5: Solution of the Cauchy (whole-space) problem at (M), 2?23 = (2.0,3.6,5.2)-
10® as function of time, computed with grid size h = 20 (left). Difference between the
numerical solutions computed with grid size h =20 and h = 10 (right).

the solution itself, indicating that it is well-resolved on the grid.

We assume that the numerical solution, uy, is a p order accurate ap-
proximation of the solution of the continuous problem, w, and that the
relation

up ~ u+ hPr, (71)

holds, where r is a function that can be bounded independently of the grid

size, h. It follows from (71) that ugp =~ u + 2PhPr and ugp, =~ u + 4PhPr.
Therefore,

o . luan —unlle 471

[ugn —unlle 2P =1

=2P4+1,

and we can estimate the convergence rate by p ~ logy(© — 1). Here, || f]¢
denotes the discrete Lo-norm of f(t). We remark that the expansion (71)
is only valid when the numerical solution is resolved on the computational
grid. For wave propagation problems, the resolution requirements for a
finite difference discretization can be quantified in terms of the number of
grid points per shortest wave length, P = L,,;,/h, see [31]. Based on the
largest significant frequency of the Gaussian (fima. =~ 6.37), and the slowest
shear velocity (¢pmin = 1831), we estimate the shortest shear wave length
to be Lyin = Cmin/ fmaz =~ 1831/6.37 ~ 287.6. For a fourth order accurate
difference scheme, adequate resolution can be expected if P > 6, see [31] for
details. In the numerical experiments below, we use the grid sizes h = 40, 20,
and 10, corresponding to P = 7.19, 14.38, and 28.76 grid points per shortest
significant wave length. The grid sizes correspond to 301, 601, and 1201
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JU7(«2) %(AB)

|lugn, — uplle | [Jugn — upl|¢ | ratio (©) | rate (p)
2.0-10% | 2.0-10% || 4.129-107% | 9.244-1076 | 44.673 5.449
2.0-10% | 3.6-10% || 6.847-107* | 3.585-107° | 19.099 4.178
2.0-10% | 5.2-10% || 5.368-107* | 6.639-1076 | 80.853 6.319
3.6-10% | 2.0-10% || 6.847-107% | 3.585-107° | 19.099 4.178
3.6-10% | 3.6-10% | 1.020-1073 | 4.768-107° | 21.387 4.349

3.6-103 | 5.2-10% || 9.681-107% | 5.021-107° | 19.278 4.192
5.2-10% | 2.0-103 || 5.368-107% | 6.639-107% | 80.853 6.319
5.2-10% | 3.6-10% || 9.681-107% | 5.021-107° | 19.278 4.192
5.2-10% | 5.2-10% || 2.202-1073 | 1.327-107* | 16.594 3.963

Table 1: Grid refinement study for the Cauchy (whole-space) problem. All stations are
located on the plane 2tV = 2.10% and the numerical solutions are computed for 0 <t < 6.

grid points in each spatial direction. In total, the computational grids have
approximately 2.7e6, 2.2e8, and 1.7e9 grid points. To integrate the system
in a stable manner on these grids, the explicit time stepping algorithm needs
approximately 103, 206, and 413 time steps per unit time, respectively.

In Table 1 we report the Lo norm of the differences between the numerical
solutions at the nine locations. The observed convergence rates indicate that
the numerical solution is fourth order accurate, or better. While it would
have been desirable to further refine the mesh to grid size h = 5, such
a calculation would have resulted in a computational grid with almost 14
billion grid points and 826 time steps per unit time. Unfortunately, we did
not have access to sufficiently large computational resources to perform such
a calculation.

For the isotropic elastic wave equation, the numerical experiments in [12]
indicate that, for long times, a sixth order artificial dissipation gives smaller
errors than a fourth order dissipation. In [12] we solved Lamb’s problem in
an isotropic half-space, which has an analytical solution, allowing the error
in the numerical solution to be evaluated explicitly. Unfortunately, the
anisotropic elastic wave equation is very difficult to solve analytically, and it
is necessary to use a different approach to estimate the long time accuracy of
the numerical solution. Here we exploit the absence of evanescent modes in
the solution of a Cauchy (whole-space) problem with homogeneous material
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properties. This means that the analytical solution should be identically
zero after all waves have propagated past a fixed location in space. After
that time, the numerical solution therefore equals the error. We proceed by
studying the norm of the displacement,

3

ul(xr, t) = | D (u®)2(xy, 1), (72)

k=1

at the nine locations (70) for ¢ > ¢;.

We are interested in the accuracy for longer times, and extend the above
simulations to run for 0 < ¢ < 12. Of the locations evaluated in Table 1, x, =
(2.0,2.0,2.0)-103 is the furthest from the source, at a distance d ~ 6.928-103.
The slowest phase velocity is ¢min = 1.831-102, from which we estimate the
propagation time from the source to x, to be t, < 6.928/1.831 ~ 3.784.
The Gaussian source time function (69) satisfies g(t) < 1077 for ¢t > 2ty =
0.75. By combining these estimates, we conclude that the analytical solution
should reach round-off levels after ¢t > t; ~ 3.784 4+ 0.75 = 4.534. (Note that
the Gaussian time function decays exponentially fast for large times, but
is never identically zero.) To test this estimate, we plot the norm of the
displacement at x, = (2.0,2.0,2.0) - 10® in Figure 6. On the finest grid, the
solution with sixth order artificial dissipation decays from |u|(x,,t) ~ 1072
for t ~ 3.9 to |u|(x,,t) ~ 107Y for ¢t ~ 4.1. This rapid decay indicates
that the analytical solution can be taken to be zero for t > to, where t5 =
4.1. The fact that t; > to indicates that we underestimated the value of
the slowest phase velocity in the direction between the source and x,. In
Figure 6, we also compare the difference between fourth and sixth order
artificial dissipation. On the finest grid, it is obvious that the sixth order
dissipation gives a more accurate numerical solution. However, the fourth
order dissipation gives comparable, or slightly better, accuracy on the two
coarser grids. The numerical solutions at the remaining locations (given
by (70)) show the same qualitative behavior.

Based on these limited numerical experiments, we surmise that the ben-
efits of using a sixth order dissipation are very limited. Furthermore, the
code for the sixth order dissipation is slightly slower than its fourth order
counterpart, because it requires a wider computational stencil and more
data to be communicated after each time step. Hence, the fourth order ar-
tificial dissipation appears to be preferable for most practical simulations,
which seldom resolve the numerical solution by more than 10 grid points per
shortest wave length.
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2 4 6 8 10 12

Figure 6: Norm of the numerical solution at x, = (2.0,2.0,2.0) - 10® as function of time,
for grid sizes h = 40 (red), h = 20 (blue), and h = 10 (black). The artificial dissipation is
of order four and six in the left and right sub-figures, respectively.

6.2. Absorption properties of the super-grid layers

To simplify the setup of practical wave propagation simulations we want
to develop a guideline for how to choose the parameters in the super-grid lay-
ers. Due to the difficulties in deriving analytical solutions of the anisotropic
wave equation, we continue studying the Cauchy (whole-space) problem in
a homogeneous material, where the solution is driven by a point moment-
tensor source of the form (68)-(69). Because there are no evanescent modes
in the solution, the exact solution is identically zero after all waves have
passed the recording stations. By locating the stations at the same dis-
tances relative to the source as in section 6.1, our previous estimate and
numerical experiment show that for ¢ > 4.5 the analytical solution is zero
at all stations. Then the numerical solution equals the reflection error.

We use the same general setup as in the previous section, and vary the
width of the super-grid layers, while keeping the grid size at h = 40. We
quantify the reflection errors by evaluating how large the norm of the numer-
ical solution is in the time interval 4.5 < ¢ < 8.0, relative to its maximum
value for 0 < ¢t < 8.0. The idea is that the reflections can be ignored if
they are smaller than a fraction of the solution itself. Here the norm of the
solution is computed according to (72), and the relative reflection error at
each station is calculated according to

maxy 5<¢<g [uf(X;, 1)
maxo<t<s [u|(x,,t) |

e(x,) = (73)

In Table 2 we report the largest value of e(x,) from the nine stations. The

33



Nog | 74 | Cept || maxpe(x,) || Nog | 74 | Cept || max, e(x,)
20 | 2e-2 | 1.3 6.545e-2 20 | 4e-2 | 0.65 1.929e-2
30 | 22| 1.3 2.314e-2 30 | 4e-2 | 0.65 3.227e-3
40 | 2e-2 | 1.3 1.117e-2 40 | 4e-2 | 0.65 1.697e-3
50 | 2e-2 | 1.3 4.367e-3 50 | 4e-2 | 0.65 4.631e-4

Table 2: Reflection errors from the super-grid layers for a Cauchy (whole-space) problem
with the damping coefficient profile (66). The largest relative reflection error, defined
by (73), of the nine stations is reported here. The width of the super-grid layers are hINyg,
where h = 40.

results indicate that the reflection errors decrease substantially by making
the layers wider, and by doubling the damping coefficient ~v4. However, to
avoid instabilities in the explicit time-stepping scheme, the time step must
be reduced when 74 exceeds =~ 0.02. Because of how the damping term is
scaled with the grid size, the time step must be approximately inversely
proportional to 4 for 4 > 0.02, see [12] for details. Hence C.y; is reduced
by a factor of two for v4 = 0.04.

The above experiment indicates that artificial reflections can be signifi-
cantly reduced by increasing the amount of damping in the layer. To make
the time step independent of the damping coeflicient, we could in principle
use a semi-implicit technique, where only the dissipative terms in the super-
grid layers are treated implicitly. However, in terms of computational cost,
such an algorithm would be significantly more expensive than the explicit
approach, because a linear system of equations must be solved in each time
step. Furthermore, a semi-implicit approach would be more difficult to load
balance for parallel computations, as the super-grid layers are only active
near the boundary of the domain. As a more straightforward alternative,
we attempt to increase the amount of damping in the middle of each layer
by modifying the profile of the damping coefficient o(r). For this purpose,
we introduce a layer transition width 0 < wy < 1, and modify (66) to be

_ ¥a(r)
U(T) - ¢(T) ) (74)
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Nog | 74 | Cept | maxpe(x;) ||| Nog | 74 | Cept || max, e(x,)
20 | 2e-2 | 1.3 4.762e-2 20 | 4e-2 | 0.65 1.909e-2
30 | 22| 1.3 1.539e-2 30 | 4e-2 | 0.65 3.115e-3
40 | 2e-2 | 1.3 6.143e-3 40 | 4e-2 | 0.65 1.662e-3
50 | 2e-2 | 1.3 2.235e-3 50 | 4e-2 | 0.65 4.621e-4

Table 3: Reflection properties of the super-grid layers for a Cauchy (whole-space) problem
with the modified damping coefficient profile (74) with wy = 0.5. The largest relative
reflection error, defined by (73), of the nine stations is reported here. The width of the
super-grid layers are hNsg, where h = 40.

where
1, €< (1 —wy)l,
P((£—&)/wit), (1 —wy)l <& <,
Pa(§) = {0, (<E<1 -,
P((—1—=20)/wyl), 1—0<EE<T—(1—wy)l,
1, £>1—(1—wy)l.

Note that the stretching function, ¢(r), is kept the same as before. After
some numerical experimentation, we found that the time stepping algorithm
remains stable for v4 = 0.02 and C.y; = 1.3, if the transition width satisfies
0.4 < wy < 1. In a second set of numerical experiments, we set wy,. = 0.5
and repeat the above calculations, see Table 3. We conclude that for v4 =
0.02, the reflection errors are reduced by a factor of almost two compared
to Table 2. For «4 = 0.04, the improvements are much smaller, indicating
that the remaining reflection errors are due to other causes.

To summarize the results of our experiments, we conclude that the re-
flection errors from the super-grid layers always decrease when the number
of grid points in the layer is increased. The reflection error also decreases
when the damping coefficient is increased from 4 = 0.02 to 74 = 0.04, but
at a high computational cost because the time step must be reduced by
a factor of two. A more economical alternative is to keep v4 = 0.02 and
modify the damping coefficient profile o(r) by setting the transition width
to wy- = 0.5. This results in about 1 % reflection error with approximately
35 grid points in the layer, and less than 0.25 % error when 50 grid points
are used in the layer.
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6.3. A half-space problem

Next, we study the half-space problem subject to a free surface boundary
condition along (3 = 0 and take the domain of interest to be

1.6-10% < (W, 2®) <10.4-10%, 0<2® <4.4.10%

In this case, we locate the source term (68) at x; = (6,6,1)-103. We choose
the thickness of the super-grid layers to be ¢ = 1.6/12 in the r(M- and r?)-
directions of parameter space. In the r®-direction, we only add a super-
grid layer near the 7(®) = 1 boundary, of thickness ¢ = 1.6/6. As before,
cross-sections of the solution are plotted as function of scaled parameter
coordinates, to equal (:E(l), ), :U(3)) within the domain of interest. In these
scaled parameter coordinates, all super-grid layers have thickness 1.6 - 103.
The damping coefficient profile (66) is used in these experiments.

In Figure 7 we show snapshots of the magnitude of the numerical solution
with grid size h = 20. The solution is shown along the free surface, z3) = 0,
and in the vertical plane () = 6 -10%. Due to the free surface boundary
condition along z(®) = 0, the solution has much more structure compared to
the Cauchy problem, and several sets of quasi-compressional, quasi-shear,
and surface waves can be identified in the solution. Note that no reflected
waves are visible within the domain of interest at time ¢t = 3.5 (Figure 7,
bottom row).

To further investigate the accuracy of the numerical solution, we study
it as function of time, for 0 < ¢ < 6, at nine spatial locations on a uniform
3 x 3 grid near the boundary of the domain of interest,

.’IJ7(”1) =2- 1037 xq(nz) = (2747 6) : 1037 ‘,L.S)) - (0’ 1’ 2) ) 103

The numerical solution is calculated on three grids with sizes h = 40,
20, and 10. As before, we estimate the convergence rate by evaluating the
Lo-norm of the differences. The results are given in Table 4. The estimated
convergence rates are close to four at all locations. The largest differences
occur on the symmetry line, () = 6 - 103, where the solution has the
most structure. Surface waves propagate at a slightly slower phase velocity
compared to shear waves, and therefore have a slightly shorter wave length.
Hence, the number of grid points per wave length is somewhat reduced
compared to the Cauchy problem, and the numerical solution on the coarsest
grid might only be marginally resolved.

The free surface boundary condition leads to evanescent modes in the
solution, i.e., at every fixed location x,., the solution only decays exponen-
tially in time as ¢ — co. Hence, there is no time t; after which the analytical
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Figure 7: Half-space problem: Magnitude of the displacement at times 1.5, 2.5, and 3.5
(top to bottom) along the free surface ) = 0 (left) and the V) = 6-10° plane (right). In
the latter figures, the free surface is located along the top edge. The super-grid layers have
thickness 1.6 - 103. The contour levels are the same in all plots and are spaced between
0.0375 (dark blue) and 1.5 (red) with step size 0.0375.
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JU7(«2) %(AB)

|lugn, — uplle | [Jugn — upl|¢ | ratio (©) | rate (p)
2.0-10° 0 1.266-1073 | 6.487-107° | 19.519 4.211
2.0-10% | 1.0-10% || 4.774-107% | 1.702-107° | 28.039 4.757
2.0-10% | 2.0-10% || 8.284-107% | 4.277-107° | 19.368 4.199
4.0-103 0 1.903-107% | 1.137-107* | 16.739 3.976
4.0-10% | 1.0-10% || 1.258-1073 | 7.359-107° | 17.106 4.009

4.0-10% | 2.0-10% || 1.628-1073 | 9.953-10~° | 16.355 3.941
6.0 - 10° 0 3.832-1073 | 2.386-107* | 16.056 3.912
6.0-10% | 1.0-10% || 3.167-1073 | 1.978-10~* | 16.017 3.908
6.0-10% | 2.0-10% || 2.252-1073 | 1.461-10~% | 15.414 3.849

Table 4: Grid refinement study for the half-space problem. All stations are on the plane
w&l) =2-10% and the solutions are computed for 0 < t < 6.

solution is identically zero at x,. Unfortunately, this prevents us from us-
ing the same technique as in § 6.1 for quantifying the long time reflection
properties of the super-grid layers.

6.4. Energy conservation test

To verify the theoretically predicted energy conservation property of our
scheme, we perform a computation without source terms, but with uni-
formly distributed random noise as initial data. For this calculation, the
computational domain is 0 < z < 30000, 0 < y < 30000, 0 < z < 17000.
Energy conservation is ensured by enforcing periodic boundary conditions
in the z- and y-directions, a free surface boundary condition along z = 0,
and a homogeneous Dirichlet condition along z = 17000. The grid spacing is
h = 200, which gives 150 x 150 x 86 grid points. We use a vertically layered
material model, with InAs in the sub-domain 0 < z < 2000 and quartz in
2000 < z < 17000. The density and stiffness matrix for InAs are given by
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Figure 8: The relative change in discrete energy as function of time, with random initial
data and a heterogeneous layered anisotropic material model. Here, time t = 90 corre-
sponds to 3,200 time steps.

(67) and the following material properties are used for quartz:

86.74 6.99 6.99 -—-1791 0 0

6.99 86.74 6.99 1791 0 0

6.99 6.99 107.2 0 0 0
0

p =2.6210%, C = 107,
—17.91 1791 0  57.94 0
0 0 0 0 57.94 —17.91
0 0 0 0 —17.91 39.875

using Sl-units.

For the semi-discrete approximation, the energy is given by (pu, us)n +
Sh(u,u), see (53). By using the same approach as for the isotropic elastic
wave equation, see [11], the expression for the fully discrete energy becomes

2

un+1 —u”
+ Sp(u" T u™) —
h

Byt = HﬁA &
t

T (Lpu™ ™, Lyu™), . (75)

b

In Figure 8 we plot the relative change in discrete energy, (E"t1/2—E1/2)/EY/?
as function of time, for ¢ € [0,90]. This corresponds to 3200 time steps. Our
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calculation confirms that the discrete energy remains constant modulus very
small fluctuations, which are on the order of the round-off level in double
precision arithmetic.

7. Conclusions

We have presented a fourth order accurate finite difference discretization
of the elastic wave equation in second order formulation for a general, 21 pa-
rameter anisotropic, heterogeneous, material. The discretization is defined
on a curvilinear grid, by use of a general coordinate transformation. The
proposed method generalizes our previous finite difference method [11] to
anisotropic elastic materials and curvilinear grids. The proposed method is
energy conserving and stable under a CFL time-step constraint, and we have
developed a practically useful approach for estimating the size of the largest
stable time step. We have also generalized the super-grid technique [12]
to anisotropic elastic materials, and demonstrated that it leads to a stable
numerical method with very small artificial reflections.

It would be straightforward to extend the proposed method to higher
orders of accuracy. Such an extension relies on compatible, higher order
accurate, summation by parts operators for approximating both first and
second derivatives with variable coefficients. In particular, the difference
approximations must satisfy (39) and (41), respectively. For first derivatives,
it is well know that such operators exist with up to eighth order truncation
error in the interior of the domain, with a reduction to order four on the
boundary. For second derivatives with variable coefficients, we have derived
operators having truncation errors of order six and eight in the interior, with
boundary reduction to order three and four, respectively. Because we solve
the elastic wave equation in second order formulation, the solution is two
orders more accurate than the truncation error near the boundary. These
operators could therefore be used to device a sixth order accurate scheme
for the anisotropic elastic wave equation.

By generalizing the technique developed in [32], it would be straightfor-
ward to extend the proposed method to include visco-elastic attenuation.
However, the number of material parameters would increase by 21 for each
visco-elastic mechanism in the model. For the isotropic visco-elastic model,
these parameters are usually determined by matching observed attenuation
rates of compressional and shear waves [33]. It is unclear if that approach
could be generalized to estimate all the parameters in an anisotropic visco-
elastic model.
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Appendix A. The M*% matrices

The divergence of the stress tensor, Lu, can be expressed in terms of
the symmetric positive definite 6 x 6 stiffness matrix C' and the differential
operator G in (3),

11 €12 - -- C16

Cl2 C22 - C26
Lu=GTCGu, C=

Cle C26 - Co66

The divergence of the stress tensor can also be written in the form (7),
where the terms are given by (8)-(10). By identifying each term in the two
expressions for Lu, we arrive at

C11 Ci16 Ci5 Cl6 C12 Cl4
Mll _ M12 _
= | C6 C66 Cs56 | > = | C6 C26 C46 | >
C15 C56 Cs5 C56 C25 C45
C15 Ci14 C13 Ci16 Ce66 Cs6
M= M? =
= | C6 Ci6 C36 | » = l1C2 C C25 |
C55 C45 C35 Cl4 C46 C45
C66 €26 C46 C56 C46 C36
22 23 _
M™ = 1cp oo caul, M7 =]coyp coa co3]|;
C46 C24 C44 Ci5 C44 C34
C15 C56 Cs5 C56 C25 C45
31 _ 32 _
M> = 1ciy ca6 ca5 |y M =|cas coa caa |
€13 €36 C35 C36 C23 C34
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and

C55 C45 C35

33 __
M™> = 1cs5 caa c3a

C35 C34 (33

By inspection, the diagonal blocks M, M?? and M33 are symmetric and

Mt =

(M)T for i # j. To show that M1!! is positive definite, we take

z = (21,22,23)" and y = (21,0,0,0, 23, 22)”. Now,

2 MYz =yTCy>kyly=kz'z, k>0,

because C is positive definite. The same technique can be used to show that
M?? and M33 are positive definite.
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